Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Experimental Neurobiology ; : 529-536, 2019.
Article in English | WPRIM | ID: wpr-763775

ABSTRACT

Stress can induce a serious epileptic encephalopathy that occurs during early infancy. Recent studies have revealed that prenatal stress exposure is a risk factor for the development of infantile spasms. Our previous work demonstrates that prenatal stress with betamethasone-induced alterations to the expression of the K⁺/Cl⁻ co-transporter (KCC2) in gamma-aminobutyric acid (GABA) interneurons lowers the seizure threshold in exposed animals. Here, we further investigated the mechanisms involved in this KCC2 dysfunction and explored possible treatment options. We stressed Sprague-Dawley rats prenatally and further treated dams with betamethasone on gestational day 15, which increases seizure susceptibility and NMDA (N-Methyl-D-aspartate)-triggered spasms on postnatal day 15. In this animal model, first, we evaluated baseline calpain activity. Second, we examined the cleavage and dephosphorylation of KCC2. Finally, we checked the effect of a calpain inhibitor on seizure occurrence. The phosphorylated-N-methyl-D-aspartate Receptor 2B (NR2B):non-phosphorylated NR2B ratio was found to be higher in the cortex of the prenatally stressed beta-methasone model. We further found that the betamethasone model exhibited increased phosphorylation of calpain-2 and decreased phosphorylation of KCC2 and Glutamic acid decarboxylase 67 (GAD67). After using a calpain inhibitor in prenatal-stress rats, the seizure frequency decreased, while latency increased. GABAergic depolarization was further normalized in prenatal-stress rats treated with the calpain inhibitor. Our study suggests that calpain-dependent cleavage and dephosphorylation of KCC2 decreased the seizure threshold of rats under prenatal stress. Calpain-2 functions might, thus, be targeted in the future for the development of treatments for epileptic spasms.


Subject(s)
Animals , Humans , Infant , Infant, Newborn , Rats , Betamethasone , Brain Diseases , Calpain , Epilepsy , gamma-Aminobutyric Acid , Glutamate Decarboxylase , Interneurons , Models, Animal , N-Methylaspartate , Phosphorylation , Rats, Sprague-Dawley , Risk Factors , Seizures , Spasm , Spasms, Infantile
2.
Experimental Neurobiology ; : 352-361, 2019.
Article in English | WPRIM | ID: wpr-763769

ABSTRACT

Neuroinflammation is one of the key mechanisms of neuropathic pain, which is primarily mediated by the Toll-like receptor 4 (TLR4) signaling pathways in microglia. Therefore, TLR4 may be a reasonable target for treatment of neuropathic pain. Here, we examined the analgesic effect of TLR4 antagonistic peptide 2 (TAP2) on neuropathic pain induced by spinal nerve ligation in rats. When lipopolysaccharide (LPS)-stimulated BV2 microglia cells were treated with TAP2 (10 µM), the mRNA levels of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS), were markedly decreased by 54–83% as determined by quantitative PCR (qPCR) analysis. Furthermore, when TAP2 (25 nmol in 20 µL PBS) was intrathecally administered to the spinal nerve ligation-induced rats on day 3 after surgery, the mechanical allodynia was markedly decreased for approximately 2 weeks in von Frey filament tests, with a reduction in microglial activation. On immunohistochemical and qPCR analyses, both the level of reactive oxygen species and the gene expression of the proinflammatory mediators, such as TNF-α, IL-1β, IL-6, COX-2, and iNOS, were significantly decreased in the ipsilateral spinal dorsal horn. Finally, the analgesic effect of TAP2 was reproduced in rats with monoiodoacetate-induced osteoarthritic pain. The findings of the present study suggest that TAP2 efficiently mitigates neuropathic pain behavior by suppressing microglial activation, followed by downregulation of neuropathic pain-related factors, such as reactive oxygen species and proinflammatory molecules. Therefore, it may be useful as a new analgesic for treatment of neuropathic pain.


Subject(s)
Animals , Rats , Analgesics , Down-Regulation , Gene Expression , Hyperalgesia , Interleukin-6 , Interleukins , Ligation , Microglia , Neuralgia , Nitric Oxide Synthase Type II , Polymerase Chain Reaction , Prostaglandin-Endoperoxide Synthases , Reactive Oxygen Species , RNA, Messenger , Spinal Cord Dorsal Horn , Spinal Nerves , Toll-Like Receptor 4 , Toll-Like Receptors , Tumor Necrosis Factor-alpha
3.
Korean Journal of Pediatrics ; : 150-155, 2018.
Article in English | WPRIM | ID: wpr-714566

ABSTRACT

PURPOSE: Infantile spasms, also known as West syndrome, is an age-specific epileptic seizure. Most patients with this condition also exhibit delayed development. This study aimed to determine the effect of long-term prenatal stress on susceptibility to infantile spasms. METHODS: We subjected pregnant rats to acute or chronic immobilization stress. Resulting offspring received N-methyl-D-aspartic acid (15 mg/kg, intraperitoneally) on postnatal day 15, and their behaviors were observed 75 minutes after injection. The expression of KCC2 and GAD67 was also determined using immunohistochemistry. RESULTS: Exposure to long-term prenatal stress increased the frequency of spasms and decreased the latency to onset of spasms compared with offspring exposed to short-term prenatal stress. Expression of KCC2 and GAD67 also decreased in the group exposed to long-term prenatal stress compared with the group exposed to short-term prenatal stress. CONCLUSION: Our study suggests that exposure to long-term prenatal stress results in increased susceptibility to seizures.


Subject(s)
Animals , Humans , Infant , Infant, Newborn , Rats , Epilepsy , gamma-Aminobutyric Acid , Glutamate Decarboxylase , Immobilization , Immunohistochemistry , N-Methylaspartate , Prenatal Exposure Delayed Effects , Seizures , Spasm , Spasms, Infantile
SELECTION OF CITATIONS
SEARCH DETAIL